
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 4, January 2007

Experience with Risk-Based Software Defect Prediction
Models

Norman Schneidewind∗
Naval Postgraduate School, USA

We share with you our experience in developing, analyzing, and validating software
requirements risk models. In addition to telling you about successes, we tell you about some of
the problems in adapting such models to real world applications like the NASA Space Shuttle
and Goddard Space Flight Facility. We believe you will find this article helpful because if
requirements risk can be identified early in development, you could save your customers a
lot of heartburn, once their software is delivered!

I. Purpose

OUR purpose is to demonstrate models for predicting risk (i.e., probability that defects exist on a software
release), as a function of risk factors. (see definitions below). This objective is motivated by the fact that one of

the software development functions of the NASA Space Shuttle Flight Software organization is to evaluate the risk
of implementing requirements changes. These changes can affect the reliability and maintainability of the software.
To assess the risk of change, the software development contractor uses a number of risk factors. The risk factors
were identified by agreement between NASA and the development contractor based on assumptions about the risk
involved in making changes to the software. This formal process is called a risk assessment. No requirements change
is approved by the change control board without an accompanying risk assessment. During risk assessment, the
development contractor will attempt to answer such questions as: “Is this change risky because the size of the change
is large or there are conflicting requirements. If this were the case, a high-risk value would be assigned for this
requirements change.1

In addition, we were motivated to attack this problem because, as explained by,2 defects can remain undetected
in the software a long time. Therefore, defect prevention is a far more practical solution to improving reliability than
defect removal. Thus, with a model at hand, using prediction, defects can be anticipated, rather than reacting to them,
after they have been detected. Furthermore, it is important to do a quantitative risk analysis because, as suggested in:3

“Risk assessment is an essential process of every software risk management plan. Several risk assessment techniques
are based on the subjective judgment of domain experts. Subjective risk assessment techniques are human intensive
and error-prone. Risk assessment should be based on product (and process) attributes that we can quantitatively
measure using product (and process) attributes.”

In accordance with this principle, we made initial steps in developing quantitative measures of risk attributes in.1

Then, in this paper, we take the next step to develop new models of risk-based defect prediction and compare their
prediction accuracy with that of existing models. The risk variables—software size in source lines of code (sloc) and
requirements conflicts (issues)—can be considered both product and process attributes, because product attributes,
depend in part, on the characteristics of the process that produce the product.. In evaluating requirements risk, we are
advised that requirements can be discovered throughout the life cycle.4 Given this situation, these authors tell us that
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it is important to do a requirements risk analysis in every life cycle phase. While this is true, the most critical phase
is when requirements are developed because it is then that we can have significant impact on improving software
reliability by resolving requirements issues before they become a major reliability problem.

II. Major Problems in Software Requirements Engineering
The fact that the risk of using ambiguous, conflicting, and incomplete software requirements is not included

in most software reliability models is unfortunate because, if requirements problems can be identified during the
requirements phase, when the cost of problem correction is low, a significant improvement in reliability could be
achieved. We hasten to add that it is understandable that most models do not include risk as a predictor because
the classical reliability growth models were developed before the software engineering field recognized that bad
requirements–as opposed to faulty code–may cause the code to be defective! Fortunately, requirements risk is now
recognized in software engineering best practice documents, for example, in the IEEE/AIAA Recommended Practice
on Software Reliability.5

A recognition of the relationship between requirements and reliability can be found in6 that provides a prescription
for a risk-based model: the model identifies a set of software reliability indicators or symptoms, and relates them to
the expected behavior of the software in the field. Once risks have been identified, analyzed, and prioritized, a risk
control strategy can be defined and implemented. Furthermore, we have to realize that our risk control decisions may
fail to avert the risk.

Our recommended risk control strategy is to use defect prediction models to control by prevention (i.e., anticipating
reliability problems by proactively predicting their occurrence and taking action to mitigating their effects).

III. Definitions
Some definitions that are central to understanding this article:

DPM: defect prediction model
ESFM: exponential forecasting model
LRM: linear regression model
SSRM: Schneidewind Software Reliability model
YSSM: Yamada S Shaped model
R2: square of the correlation coefficient

software reliability growth model: a software reliability model that assumes that as testing and operation of the
software increases, more defects will be detected and removed and reliability will increase

Risk variable examples:
sloc: cumulative source lines of code (sloc): (e.g., aggregation of number of source lines of code written in response

to a Shuttle change requests).
issues: cumulative number of possible conflicts among requirements (e.g., an aggregation, across change requests

of Shuttle software requirements conflicts, for example, providing greater thrust conflicts with lowering engine
weight). An aggregation of conflicting requirements issues causes reliability risk.

ri : risk variable i (e.g., risk of excessive size, excessive conflicting issues).
cumulative: the aggregation of defect and risk variable counts across requirements change requests (i.e., change

requests generate the need for additional source lines of code, may result in requirements conflicts, and may cause
defects to occur).

cumulative defects: predicted by risk variable i during operating time interval t (e.g., NASA Shuttle cumulative
Discrepancy Reports) For example, a program executes an incorrect path due to excessive requirements conflicts and
a Discrepancy Report is written.
Di : cumulative defects as predicted by risk variable i during operating time interval t

t: operating time (e.g., execution, wall clock, calendar), either in test or operation.
mean relative residual error: mean of [(actual value- predicted value)/actual value].
Outlier: a value outside the range of recorded defect and risk data
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IV. Approach to the Problem
We approached the problem of defect prediction by focusing on the risk that requirements changes will lead to

defects in the software. Risk is a multifaceted issue and must be addressed with methods that are appropriate for the
decisions being made. Historically, risk assessment and risk management professionals have focused on accident
risks, natural hazard risks, business interruption risks, project risks, and financial risks. In these areas, organizations
have used very systematic processes and tools to understand and prioritize these diverse risks (especially those with
catastrophic consequences) so that limited resources can be effectively applied to reduce risk.7 The general concept
is given in the following equation:

Risk = Frequency of Event × Probability of Event × Consequence of Event

While the above equation is useful for organizing one’s thinking about risk, it is difficult to quantify in the real
world. The only easily quantified factor is Frequency of Event. How do you quantify Probability of Event and
Consequence of Event in the above example? We have found it better to focus on controlling risk. A simple example
of controlling risk is to apply a statistical control chart to the Shuttle Combustion Program defect groups (i.e., sets
of defect identifiers) in Fig. 1 in order to identify a defect group (a range of defect identifiers) that is out of control
(i.e., exceeds the mean plus three standard deviations). In the figure, risk is represented by defect group 8 being out
of control and posing a threat (i.e., consequence) to the safety and reliability of this Shuttle system, with a frequency
of 1 out of 20. This simple model could be used to alert Shuttle software managers to investigate the cause of the
anomaly and correct the relevant module (s).
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V. Defect Prediction Model (DPM)
The first model to be considered has the form Di = a rb

i , where a and b are parameters estimated from regression
analysis. One desirable property of this model is that cumulative defects Di should increase with time reflecting the
fact that, as the incompleteness, imprecision, and ambiguity of requirement increase, the problem becomes worse
over time. This characteristic can be seen in Fig. 2, where predicted defect count, for the NASA Shuttle Flight
software, as a function of requirement risk variable issues, is plotted against time.

Another desirable property is that it should not be necessary to provide different prediction models for each type of
defect because it was found in an operating system that 72 percent of reported field software failures were recurrences
of known software faults and 70 percent of the faults had identical characteristics.8 These authors argue that given the
similarity of results, different models are not necessary to predict different types of defects. Thus, we have produced
models that independent of the types of defects predicted.

A by-product of developing DPM is that rather than assuming an exponential form for Di, a linear regression
equation was fitted to the defect data. This model is referred to as LRM.

VI. Application of the Defect Prediction Model (DPM)
In this section, we take the reader through the step-by-step process of applying the DPM.
1. The objective is to predict defect count for the Space Shuttle flight software, as a function of risk variables,

in order to assess this software’s quality.
2. Starting with the assumed form of the model as given by Di = arb

i , collect data to do the parameter estimation,
prediction, and validation in later steps. The data are shown in Table 1. Note that data in the intervals t = 1,
16 are used to estimate parameters. The data in the intervals t = 17, 26 are used for comparing predictions
with the actual defect count, The latter data were not known at the time of making the predictions.
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Table 1 NASA Shuttle and NASA Goddard Space Flight Center (GSFC) Data.

Shuttle sloc Shuttle issues Shuttle defects GSFC defects

32 44 2 1
1933 37 10 6

807 41 3 7
100 33 2 3
447 35 1 7

77 50 3 5
10 43 3 0

7 36 1 3
0 40 1 1

32 43 2 3
1933 37 1 3

100 38 2 1
447 52 1 3

77 37 1 6
10 36 1 3

800 41 1 3
442 48 1 4
408 39 1 2
423 37 2 2
430 34 1 0
401 40 4 3
408 41 5 5
440 49 3 0
451 41 2 0
392 32 1 5
466 43 2 0

2
2
4
0
1
1
2
3

Notes: Each entry corresponds to a time interval. There are 26 intervals of data reported for the
Shuttle and 35 for GSFC. The Shuttle data correspond to Part 1 of Table 2 and the GSFC data
correspond to Part 2. There is no sloc and issues data available for the GSFC applications.

3. The next step is to estimate the parameters a and b. This is done by plotting
log Di = log a + b log ri and noting that the log a = the Y intercept and b = the slope of the plot. The

equations for ri = sloc and issues are shown in Table 2, Part 1.
4. After the equations are obtained, predictions can be made in the time intervals t = 17, 30. As shown in Fig. 2,

we can predict defect count at t = 30. Both the sloc and issues equations are used to bound the actual defect
count.
Note that the predictions in the intervals t = 1, 16 will be more accurate than those in the intervals t = 1, 30
because the former represents retrospective predictions compared with known defect data, while the latter
represents future predictions compared with defect data that was unknown at the time of the predictions.

5. Then, we compare predictions produced by Di = a rb
i with actual defect count in time intervals greater than

the range of t of recorded data. We do this in Fig. 2, where the outlier time is t = 30. We do not have the
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Table 2 Mean Relative Residual Prediction Error Comparison of Various Models. Cumulative Defect Count
Predictions Parameter Estimation Sample = 16 (t = 1, 16). Prediction Sample = 10 (t = 17, 26).

Model Data set Error

Part 1

ESFM NASA Space Shuttle (various Change Requests Discrepancy Reports) 0.0006
LRM NASA Space Shuttle (various Change Requests Discrepancy Reports) −0.0233

D = 8.1446 + 1.8041 t

R2 = 0.9639
DPM NASA Space Shuttle (various Change Requests Discrepancy Reports) −0.0874

risk variable = issues
Di = 0.0815∗ (issues0.9425)

DPM NASA Space Shuttle (various Change Requests Discrepancy Reports) 0.1561
risk variable = sloc

Di = 0.2753∗ (sloc0.5407)
YSSM NASA Space Shuttle (various Change Requests Discrepancy Reports) 0.6624
SSRM NASA Space Shuttle (various Change Requests Discrepancy Reports) −0.8378

Part 2
ESFM NASA Goddard Space Flight Center (Satellite System Defect Reports) −0.0125
SSRM NASA Goddard Space Flight Center (Satellite System Defect Reports) −0.0137
LRM NASA Goddard Space Flight Center (Satellite System Defect Reports) −0.0640

D = 3.775 + 3.2324 t

R2 = 0.9661

ESFM: Exponential Smoothing Forecasting Model, LRM: Linear Regression Model, DPM: Defect Prediction Model, YSSM: Yamada
S-Shaped Model, SSRM: Schneidewind Software Reliability Model.

actual defect count at t = 30, but we approximate it by computing the value of the regression equation,
D = 8.1446 + 1.8041 t , which was obtained from a fit of the actual defect count, at t = 30.

6. The purpose of this step is to interpret the results. Interestingly, it was found that step 5 did not produce
the most accurate predictions because, when a linear curve was fitted to the data, the LRM equation shown
in Part 1 of Table 2 produced more accurate predictions. Thus, if DPM and LRM were the only models
considered, the latter would be the choice.

7. The last step is to validate the model. This is performed by computing the mean relative residual error for
DPM and LRM in Part 1 of Table 2, where we see that issues is a better predictor of defect count than sloc,
but LRM is better than either of these, yielding a low error of 2.33%. However, ESFM that does not require
the use of risk variables, yields the most accurate predictions with an error of 0.06%!

VII. Software Reliability Growth Models
Now, we provide a brief introduction to the software reliability growth models that were evaluated. These models

have been implemented in FORTRAN and C++ by the Naval Surface Warfare Center, Dahlgren, Virginia as part
of the Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS). It can be run on an
IBM PCs under all Windows operating systems. In addiction, the SSRM is one of the models recommended in the
IEEE/AIAA P1633™/Draft 3, Draft Standard for Software Reliability Prediction.5

A. Schneidewind Software Reliability Model9

The basic philosophy of this model is that as testing proceeds with time, the defect detection process changes.
Furthermore, recent defect counts are usually of more use than earlier counts in predicting the future. Three approaches
can be employed in utilizing the defect count data, i.e. number of failures detected per unit of time. Suppose there
are t intervals of testing and di defects were detected in the ith interval, one of the following can be done:

— Utilize all of the defects for the t intervals.
— Ignore the defect counts completely from the first s − 1 time intervals (1 ≤ s ≤ t) and only use the data

from intervals s through t .
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— Use the cumulative defect count from intervals 1 through s − 1, i.e Ds−1 = ∑s−1
i=1 di .

The first approach is used when it is determined that the failure counts from all of the intervals are useful in
predicting future counts. The second approach is used when it is determined that a significant change in the defect
detection process has occurred and thus only the last t − s + 1 intervals are useful in future defect count forecasts.
The last approach is an intermediate one between the other two. Here, the combined defect counts from the first
s − 1 intervals and the individual counts from the remaining are representative of the defect detection behavior for
future predictions.

B. Space Shuttle Flight Software Application10

The SSRM has been used to predict the reliability of the Shuttle flight software. The Shuttle software represents
a successful integration of many of the computer industry’s most advanced software engineering practices and
approaches. Beginning in the late 1970’s, this software development and maintenance project has evolved one of the
world’s most mature software processes applying the principles of the highest levels of the Software Engineering
Institute’s (SEI) Capability Maturity Model (the software is rated Level 5 on the SEI scale) and ISO 9001.

Standards. This software process includes state-of-the-practice software reliability engineering (SRE) method-
ologies. Reliability predictions are used by the developer to add confidence to a formal software certification process
comprised of requirements risk analysis, design and code inspections, testing, and independent verification and
validation.

C. Yamada S Shaped Model (YSSM)11

The YSSM has the interesting characteristic of a defect rate that does not monotonically decrease with time,
as is the case with most reliability growth models (e.g., SSRM). Instead, the rate initially increases, reflecting the
immaturity of the software testing process to identify and remove defects. Subsequently, when the process matures,
the defect rate peaks and then declines. Among other applications, this model has been implemented at the Naval
Surface Warfare Center, Dahlgren, Virginia involving research in reliability prediction and analysis of the TRIDENT
I and II Fire Control Software.

VIII. Exponential Smoothing Forecasting Model (ESFM)12

Our rationale for using ESFM is that, according to,12 significant changes are possible in the data that is used in a
model. Whenever there is a significant change in the pattern, computations should be made using only the most recent
observations. Abrupt changes were observed in our data, for example in the defect rate, shown in Fig. 1. Therefore,
we must be able to easily adjust the number of past observations that are included in our computations to model these
changes.

IX. Solutions to the Defect Prediction Problem
In obtaining solutions to the defect prediction problem, we focused on DPM and an adaptation of ESFM–two

new software defect prediction models. Both models use defect data from the NASA Space Shuttle flight software
and the NASA Goddard Space Flight Center satellite projects. In addition, the first model uses requirements risk
data from the Shuttle flight software. In order to not rely on the accuracy of my model predictions as the sole
indicator of model validity, we experimented with other models—the Schneidewind Software Reliability Model and
the Yamada S-Shaped Model2—comparing their accuracy with the developed models. As by-products, we found,
surprisingly, that when the exponential smoothing model13 was adapted to defect prediction, it produced the most
accurate predictions of all models considered. In adapting this model to defect prediction, we developed a new and
accurate method of statistically estimating the model’s parameter. Other methods12, select a value of the parameter
without computing it, depending on the degree of smoothing that is desired. Another surprising result was that linear
regression, with defect count as a function of defect occurrence time, produced the second best predictions. Thus, a
lesson learned for the practitioner is that simple models can yield good results, and because they are simple, would
be inexpensive to implement and easy to use.
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X. Applicability of the Models
It is important to note two characteristics of these models. First, using cumulative values of both the independent

and dependent model variables achieves a smoothing effect by aggregating the raw data to produce more accurate
predictions than by using the raw data. Second, it is important to recognize that our models can only predict known
defects because the models are based, in part, on historical known defects.8 We cannot account for the defects that
are present in the software but have not made their presence known!

XI. Problems that were Encountered in Obtaining a Solution
In developing these models, we must frankly admit specific deficiencies arise that are not the result of lack

of understanding of the importance of certain model attributes, such as defect severity and the consequences to
reliability of severity. Rather, the deficiencies occur because certain data are not available in our project’s database!
For example, the perfect world definition of risk is stated in the following: according to,14 “risk is a function of:
the possible frequency of occurrence of an undesired event, the potential severity of resulting consequences, and the
uncertainties associated with the frequency and severity.” In the real world, we were unable to differentiate the defects
by severity in the NASA Shuttle database and to estimate the “uncertainties” associated with severity. However, we
were able to predict undesired events (e.g., defects arising from requirements problems).

XII. Model Validation
While, of course, it is important to validate requirements–beyond the scope of this paper–it is also important to

validate models that evaluate requirements! It is important to validate models before they are put into practice. The
most important validation method is to compare model predictions against future actual values,13 rather than relying
on retrospectively fitting the model with historical values. One example is that we compared predictions produced by
DPM (Di = arb

i ) with actual defect count in time intervals greater than the range of t for estimating the parameters
a and b. We did this in Fig. 2 for the Shuttle flight software, where the outlier time is t = 30. Fig. 2 shows that the
outlier values of sloc and issues still bound the actual defect count at t = 30. We are not suggesting that retrospective
testing is not valuable. It is only to urge that model builders not assume that because they obtain a good fit with
historical data, that their model is valid. Unfortunately, such “validation” will only be legitimate to the extent that
the future is like the past!

Other validation methods involve tabulating and comparing prediction error statistics for the models. The summary
of the error statistics for all models for cumulative defect predictions is shown in Table1. Table 1 also documents the
LRM equations and their R2 values.

Part 1 compares the prediction accuracy of DPM, ESFM, and LRM in Table 1, using NASA Space Shuttle flight
software defect counts. Table 1 shows an amazing result: ESFM and LRM–both simple models–are more accurate
than DPM, despite the fact that the latter is a function of the risk variable issues, whereas ESFM and LRM are only
a function of time of occurrence of defects!.

Part 2 evaluates ESFM, SSRM, and LRM, using the NASA Goddard Space Flight Center (GSFC) defect counts..
One of the salient results is that, as in the case in Part1, ESFM comes out on top for the GSFC software.

The implication of the results is significant: the simple models—ESFM and LRM—can be used to accurately
predict defect occurrence for the Shuttle flight software and the GSFC software and similar mission critical software.

XIII. Lessons Learned
Most important, the new risk-driven defect prediction models are superior to reliability growth models we tested

for defect prediction. However, the exponential smoothing forecasting model and the linear regression model were
even better for the Shuttle software; the exponential smoothing forecasting model was also superior for the GSFC
software. This is particularly significant because these models do not depend on any variables other than time of defect
occurrence. Thus, they are simple to implement and use. We cannot be certain that these results can be generalized
to all software because, undoubtedly, there are counter examples from other applications, but we suggest that the
process we have used for model development and evaluation can be applied to any application, independent of the
particular result that may be attained.
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